ED 425 176	TM 029 238
AUTHOR	Blankmeyer, Eric
TITLE	Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
PUB DATE	1998-05-00
NOTE	7p.
PUB TYPE	Reports - Descriptive (141)
EDRS PRICE	MF01/PC01 Plus Postage.
DESCRIPTORS	*Algorithms; Chi Square; *Estimation (Mathematics);
	*Robustness (Statistics); *Sample Size
IDENTIFIERS	*Covariance Matrices; Mean (Statistics); *Minimum Volume Ellipsoid

ABSTRACT

P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as many as half the observations are contaminated. Samples from a multivariate normal distribution form ellipsoid-shaped "clouds" of data points. The MVE corresponds to the smallest such point cloud containing at least half of the observations, the uncontaminated portion of the data. These "clean" observations are used for preliminary estimates of the mean vector and the covariance matrix. Using these estimates, the program next computes a robust Mahalanobis distance for every observation vector in the sample. Observations for which the robust Mahalanobis distances exceed the 97.5% significance level for the chi-square distribution are flagged as probable outliers. Applications of the MVE are outlined, and a BASIC program is provided so that users can try the algorithm on small or medium data sets before obtaining a more comprehensive version. (SLD)

*********	************	*******	***	*****	****	****	*****	*****	****	* * * *	*****	******
*	Reproductions	supplied	by	EDRS	are	the	best	that	can	be	made	*
*		from t	he	origi	inal	docu	ment.					*
*********	************	*******	***	*****	****	****	*****	*****	****	****	*****	******

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

<u>ERie</u> Blankmeyer

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE)

Eric Blankmeyer Department of Finance and Economics Southwest Texas State University San Marcos, TX 78666 May 1998 U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) This document has been reproduced as received from the person or organization

 originating it.
 Minor changes have been made to improve reproduction quality.

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

Robustness is an issue for any multivariate technique that makes use of mean vectors and covariance matrices. The classical estimates of these statistics are quite vulnerable to outliers. A few bad observations can skew a mean, cause a standard deviation to explode, or distort a correlation coefficient. In their monograph *Robust Regression and Outlier Detection* (Wiley, 1987), P. J. Rousseeuw and A. M. Leroy propose a very robust alternative to the classical estimates --the Minimum Volume Ellipsoid (MVE). This note provides a brief description of the technique and a BASIC program to implement it.

The MVE is a "high-breakdown" estimator; loosely speaking, this means that it can cope with samples in which as many as half the observations are contaminated. (If more than half the data are outliers, no linear estimator can distinguish the good observations from the bad ones !) Samples from a multivariate normal distribution form ellipsoid-shaped "clouds" of data points. The MVE corresponds to the smallest such point cloud containing at least half the observations -- the uncontaminated portion of the data. These "clean" observations are used for preliminary estimates of the mean vector (m) and the covariance matrix (S). Using these estimates, the program next computes a robust Mahalanobis distance (x - m)'S⁻¹(x-m) for every observation vector x in the sample. Observations whose robust Mahalanobis distances exceed the 97.5 percent significance level for the chi-square distribution are flagged as probable outliers. (The chi-square statistic has degrees of freedom equal to the number of variables in the sample.) For a detailed discussion of high-breakdown estimation and the resampling algorithm that it uses, please refer to the book by Rousseeuw and Leroy.

The MVE is appropriate for data sets that can reasonably be assumed to come from a multivariate normal distribution (apart from any outliers that may be present). Applications include

- o Hypothesis tests involving means.
- o Hypothesis tests involving covariance or correlation matrices.
- o Linear and quadratic discriminant functions.
- o Identification of high-leverage observations in certain sets of independent variables in logit and probit models.
- o Computation of eigenvalues, eigenvectors, principal components and factor analysis.
- o Canonical correlation.

2

1

There are in the public domain several computer implementations of MVE and its variants, including the Minimum Covariance Determinant (MCD) algorithm. Rousseeuw and Leroy's original MINVOL program is available at http://lib.stat.cmu.edu/general/. The same site contains Douglas Hawkins' "fsa" programs. Rocke and Woodruff's robust estimators are at http://lib.stat.cmu.edu/jasasoftware/. P. J. Rousseeuw has recently created a new and faster version of MCD which is available at his website: http://win-www.uia.ac.be/u/statis/publicat/fastmcd_abstr. All these programs are FORTRAN or C codes to be compiled by the user. Since most researchers will have ready access to a BASIC interpreter (for example QBASIC or Visual Basic), the attached BASIC version of MVE provides an opportunity to try the algorithm on small or moderate-sized data sets (those having fewer than ten variables) before obtaining a more comprehensive version.

Additional useful references on the MVE and related methods are

P. J. Rousseeuw and B. C. van Zomeren. "Unmasking Multivariate Outliers and Leverage Points," (with discussion) *Journal of the American Statistical Association*, September 1990, Vol. 85, No. 411, 633-651.

D. M. Rocke and D. L. Woodruff. "Identification of Outliers in Multivariate Data," *Journal of the American Statistical Association*, September 1996.

A BASIC PROGRAM TO IMPLEMENT THE MINIMUM VOLUME ELLIPOSID A1

REM GIVEN A SAMPLE OF N OBSERVATIONS ON K VARIABLES FROM REM A MULTIVARIATE NORMAL DISTRIBUTION, SOME OF THE OBSER-REM VATIONS MAY BE CONTAMINATED. THIS PROGRAM IDENTIFIES REM PROBABLE OUTLIERS IN RELATION TO THE MEAN VECTOR AND REM THE COVARIANCE MATRIX. THE USER MAY THEN EXAMINE THE REM ANOMALOUS DATA AND ELIMINATE THEM, CORRECT THEM OR REM VALIDATE AND RETAIN THEM. THE PROGRAM USES THE REM MINIMUM VOLUME ELLIPSOID (MVE) PROPOSED IN THE BOOK REM "ROBUST REGRESSION AND OUTLIER DETECTION" BY PETER REM J. ROUSSEEUW AND ANNICK M. LEROY (WILEY, 1987). REM REM MVE ESTIMATION IS BASED ON A RESAMPLING SCHEME. THE REM MEAN VECTOR AND THE COVARIANCE MATRIX ARE FIT TO A LARGE REM NUMBER OF SUBSAMPLES, EACH OF SIZE K+1, AND THE SUBSAMPLE REM IS SELECTED WHICH MINIMIZES A CERTAIN FUNCTION OF THE REM DETERMINANT OF THE COVARIANCE MATRIX. THIS AMOUNTS TO REM CHOOSING THE SMALLEST ELLIPSOID WHICH INCLUDES AT LEAST REM HALF THE OBSERVATIONS. THE USER SHOULD SPECIFY REM ENOUGH SUBSAMPLES TO PROVIDE VIRTUAL ASSURANCE REM THAT THERE WILL BE SEVERAL UNCONTAMINATED SUBSAMPLES. REM FOR THIS PURPOSE, THE FOLLOWING GUIDELINES ARE **REM SUGGESTED:** REM MINIMUM NUMBER NUMBER OF REM OF SUBSAMPLES REM VARIABLES 1,000 2 REM 3 1,500 REM 4 REM 2,000 5 2,500 REM 6 OR MORE REM 3,000 REM REM FOR FURTHER DISCUSSION, THE USER SHOULD CONSULT THE REM BOOK BY ROUSSEEUW AND LEROY. REM REM THE FUNCTION FMED HAS BEEN ADAPTED FROM ROUSSEEUW REM AND LEROY'S FORTRAN PROGRAM "PROGRESS". REM REM THERE IS NO WARRANTY, EXPRESSED OR IMPLIED, FOR THIS REM PROGRAM. ITS SUITABILITY FOR COMMERCIAL USE OR FOR REM ANY PARTICULAR PURPOSE IS NOT GUARANTEED. REM 3002 DEFLNG I-N 3004 DEFDBL A-H,O-Z 3008 DECLARE FUNCTION FMED (B(), N, NH) 3015 RANDOMIZE TIMER 3020 PRINT "WHAT IS THE INPUT FILE ?" 3025 INPUT INFILES 3030 PRINT "WHAT IS THE OUTPUT FILE ?" 3035 INPUT OUTFILE\$ 3040 OPEN INFILE\$ FOR INPUT AS #1 3045 OPEN OUTFILES FOR OUTPUT AS #2 3050 PRINT "HOW MANY OBSERVATIONS ?" 3055 INPUT N

4

```
3070 PRINT "HOW MANY VARIABLES ?"
 3075 INPUT K
 3077 \text{ K1} = \text{K+1}
 3080 PRINT "HOW MANY SUBSAMPLES SHOULD BE DRAWN ?"
 3085 INPUT ITR
 3090 DIM VI(N, K), VJ(K1, K), C(K, K), DIS(N)
 3095 \text{ DIM AVG}(K), M(K1), RDIS(N)
 3100 DIM CSMED(10), CS975(10), TEMP(N)
 3110 \text{ CRITMIN} = 1000000\#
 3115 \text{ NH} = (N+K1)/2
 3120 RK = K
 3130 RN = N
 3132 \text{ RK1} = \text{K1}
 3135 REM READ THE DATA
 3140 FOR I = 1 TO N
 3150 FOR J = 1 TO K
 3160 INPUT #1, VI(I, J)
 3170 NEXT J
 3180 NEXT I
REM READ A TABLE OF THE MEDIAN CHI-SQUARE FOR K = 1-10 D.F.
 3250 DATA 0.46,1.39,2.37,3.36,4.35,5,35,6.35,7.34,8.34,9.34
 3270 \text{ FOR I} = 1 \text{ TO } 10
 3280 READ CSMED(I)
 3290 NEXT I
REM READ A TABLE OF THE 97.5% CHI-SQUARE FOR K = 1-10 D.F.
 3300 DATA 5.02,7.38,9.35,11.14,12.83,14.45,16.01,17.54,19.02,20.48
 3310 \text{ FOR I} = 1 \text{ TO } 10
 3320 READ CS975(I)
 3330 NEXT I
REM PERFORM A ROBUST STANDARDIZATION OF THE DATA
 3335 N2 = (N+1)/2
 3340 \text{ FOR } J = 1 \text{ TO } K
 3350 \text{ FOR I} = 1 \text{ TO N}
 3360 \text{ TEMP}(I) = VI(I,J)
 3370 NEXT I
.3380 \text{ AMED} = \text{FMED}(\text{TEMP}(), N, N2)
 3390 \text{ FOR I} = 1 \text{ TO N}
 4000 VI(I,J) = VI(I,J) - AMED
 4010 \text{ TEMP}(I) = \text{ABS}(VI(I,J))
 4020 NEXT I
 4030 \text{ AMED} = \text{FMED}(\text{TEMP}(), N, N2)
 4040 \text{ FOR I} = 1 \text{ TO N}
 4050 VI(I,J) = VI(I,J)/(1.4826*AMED)
 4060 NEXT I
 4070 NEXT J
        START ITERATIONS; CHOOSE A RANDOM SUBSAMPLE OF K1 DATA
REM
 4240 FOR L = 1 TO ITR
 4250 PRINT "INTERATION
                             "; L
 4260 \text{ FOR I} = 1 \text{ TO K1}
 4262 M(I) = INT(RND * N) + 1
 4264 NEXT I
 4266 \text{ FOR I} = 1 \text{ TO K1}
 4268 \text{ FOR } J = 1 \text{ TO } K1
 4270 IF I = J GOTO 4274
```

A2

4272 IF M(I) = M(J) GOTO 4260 4274 NEXT J 4276 NEXT I 4278 FOR I = 1 TO K1 4280 MI = M(I)4290 FOR J = 1 TO K4300 VJ(I, J) = VI(MI, J)4310 NEXT J 4320 NEXT I COMPUTE THE SUBSAMPLE COVARIANCE MATRIX REM 4340 FOR J = 1 TO K4350 AVG(J) = 0.04360 FOR I = 1 TO K14370 AVG(J) = AVG(J) + VJ(I,J)4380 NEXT I 4390 AVG(J) = AVG(J)/RK14400 FOR I = 1 TO K14410 VJ(I,J) = VJ(I,J) - AVG(J)4420 NEXT I 4422 NEXT J 4430 FOR I = 1 TO K 4440 FOR J = 1 TO K4450 C(I,J) = 0.04460 FOR JJ = 1 TO K1 4470 C(I,J) = C(I,J) + VJ(JJ,I) * VJ(JJ,J)4480 NEXT JJ 4485 C(I,J) = C(I,J)/RK4490 NEXT J 4500 NEXT I REM INVERT THE SUBSAMPLE COVARIANCE MATRIX 4510 DETC = 1.04520 FOR I = 1 TO K4530 RPIVOT = C(I,I)4535 IF ABS(RPIVOT) < 0.001 THEN GOTO 4260 4540 DETC = DETC*RPIVOT 4550 C(I,I) = 1.04560 FOR JJ = 1 TO K4570 C(I,JJ) = C(I,JJ)/RPIVOT4580 NEXT JJ 4590 FOR J = 1 TO K4600 IF I = J THEN GOTO 4660 $4610 \ CJI = C(J,I)$ 4620 C(J,I) = 0.04630 FOR JJ = 1 TO K 4640 C(J,JJ) = C(J,JJ) - C(I,JJ) * CJI**4650 NEXT JJ** 4660 NEXT J 4670 NEXT I REM COMPUTE THE ROBUST MAHALANOBIS DISTANCES AND FIND REM THE MEDIAN DISTANCE AND THE MEDIAN ELLIPSOID VOLUME. 4680 FOR I = 1 TO N4690 DIS(I) = 0.04700 FOR II = 1 TO K4710 FOR JJ = 1 TO K

A3

```
Α4
4720 DIS(I) = DIS(I)+(VI(I,II)-AVG(II))*(VI(I,JJ)-AVG(JJ))*C(II,JJ)
4730 NEXT JJ
4740 NEXT II
4745 \text{ TEMP}(I) = DIS(I)
4750 NEXT I
4760 \text{ DISMED} = \text{FMED}(\text{DIS}(), N, \text{NH})
4780 CRIT = SQR (DETC*DISMED^RK)
REM IF THIS ELLIPSOID VOLUME IS THE SMALLEST SO FAR, UPDATE
REM THE MEAN VECTOR AND THE COVARIANCE MATRIX.
4790 IF CRIT >= CRITMIN THEN GOTO 4860
4795 CRITMIN = CRIT
4800 \text{ FOR I} = 1 \text{ TO N}
4810 \text{ RDIS}(I) = \text{TEMP}(I)
4820 NEXT I
4860 NEXT L
4870 PRINT #2, "97.5% VALUE OF CHI SQUARE = ", CS975(K)
5000 PRINT #2, "OBSERVATIONS WITH ROBUST DISTANCES GREATER"
5010 PRINT #2, "THAN THE 97.5% CHI-SQUARE VALUE (PROBABLE"
5015 PRINT #2, "OUTLIERS)"
5020 \text{ FOR I} = 1 \text{ TO N}
5030 RDIS(I) = CSMED(K) * RDIS(I) / DISMED
5040 IF RDIS(I) <= CS975(K) THEN GOTO 5060
5050 PRINT #2, I, RDIS(I)
5060 NEXT I
5070 END
940 FUNCTION FMED (B(), N, NH)
945 DEFLNG I-N
950 DEFDBL A-H,O-Z
980 LL = 1
990 LR = N
1000 IF LL >= LR GOTO 1210
1010 \text{ AX} = B(\text{NH})
1020 \text{ JNC} = \text{LL}
1030 J = LR
1040 IF JNC > J GOTO 1180
1050 IF B(JNC) >= AX GOTO 1080
1060 \text{ JNC} = \text{JNC} + 1
1070 GOTO 1050
1080 IF B(J) <= AX GOTO 1110
1090 J = J - 1
1100 GOTO 1080
1110 IF JNC > J GOTO 1170
1120 WA = B(JNC)
1130 B(JNC) = B(J)
1140 B(J) = WA
1150 JNC = JNC + 1
1160 J = J - 1
1170 GOTO 1040
1180 IF J < NH THEN LL = JNC
1190 IF NH < JNC THEN LR = J
1200 GOTO 1000
1210 \text{ FMED} = B(\text{NH})
1220 END FUNCTION
```

م^ن ،

· · · ·

U.S. Department of Education

Office of Educational Research and Improvement (OERI) National Library of Education (NLE) Educational Resources Information Center (ERIC)

TM029238

REPRODUCTION RELEASE

(Specific Document)

I. DOCUMENT IDENTIF	ICATION:
---------------------	----------

TITLE: ROBUST MEANS AND COUARIANCE MATR	ICES BY
THE MINIMUM VOLUME ELLIPSOID (MVE)
Author(s): FRIC BLANKMEYER	
Corporate Source:	Publication Date:
	MAY 1998

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, *Resources in Education* (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents	The sample sticker shown below will be affixed to all Level 2A documents	The sample sticker shown below will be affixed to all Level 2B documents					
PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY	PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY. HAS BEEN GRANTED BY	PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY					
		<u></u>					
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)	TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)	TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)					
1	2A	2B					
Level 1	Level 2A	Level 2B					
	1	t · · · ·					
4							
Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archiv media (e.g., electronic) and paper copy.		Check here for Level 2B release, permitting reproduction and dissemination in microfiche only					
Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.							
I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.							
Sign here,→	Nemyer ERI	C BLANKMEYER					
please Organization/Address: DEPT	FINANCE/ECONOMICS	-345-3253 FX512-245-3089 L busines, Date: 9-29-98					
IC SAN MARCO		·lder (over)					